其实数据分析(数据挖掘)有什么用的问题并不复杂,但是又很多的朋友都不太了解为什么不建议使用数据挖掘,因此呢,今天小编就来为大家分享数据分析(数据挖掘)有什么用的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!
本文目录
大数据和数据挖掘的区别
随着大数据的兴起,隐藏在大数据背后的相关技术也逐渐被揭开神秘的面纱,其中,数据挖掘即是大数据应用过程中非常重要的环节。以下是国内领先的移动大数据服务商极光大数据的副总裁陈宇针对数据挖掘技术的简析,并对比总结了大数据时代下的数据挖掘技术相较于传统数据挖掘的突出优势。
数据挖掘技术概要
从海量的数据库中选择、探索、识别出有效的、新颖的、具有潜在效用的乃至最终可理解的模式以获取商业利益的非平凡的过程就是Fayyad和Piatetsky-Shapiror在1996年提出的数据挖掘的定义。这个定义有三个要点:处理海量的数据;揭示企业运作中的内在规律;为企业运作提供直接决策分析,并带来巨大经济效益。
技术不断演进,社会不断发展,对于数据挖掘的定义也发生了一些变化。例如对于数据量级的变化,从海量已经到了巨量。在1996年的时候,人们是无法想象2017年我们将会处理如此巨大的数据。而数据处理的样本规模也在从采样发展到全量,例如极光大数据在处理关键人的同轨分析特征识别的时候,会处理几百亿的位置信息轨迹,从中提炼出具有相同轨迹的设备信息,从而通过设备信息关联出自然人的相互关系等等。
同时,相对于1996年,数据应用发掘企业的内在规律已经拓展到了社会运行特征、人群行为特征、经济发展特征等等各个方面。而数据挖掘的目的也不仅是为了经济效益,也对社会生产力提升和管理水平提升提供了相应支持。
数据挖掘过程的关键点
传统数据挖掘过程一般采用如下过程:
数据挖掘的过程
在大数据时代,数据挖掘的过程本质相同,但是有如下差异:
大数据时代数据挖掘的差异
1.从结构化数据到非结构化数据。传统的数据挖掘都是依据数据库里面的数据进行分析,在大数据时代,数据来源多种多样,对于这些非结构化数据的加工是大数据数据挖掘的重要特征。因为非结构化数据处理的成功与否决定了大数据数据源的质量好坏,而这并不是算法可以解决的。
2.从抽样数据到全量数据。传统数据挖掘受制于数据处理能力,只能使用少量的抽样数据进行分析。在大数据技术环境下,完全可以实现全量数据的分析,效率甚至可能高于抽样数据的分析。
3.从因果关系到相关性分析。大数据分析通过事件和多种因素进行相关性分析,通过数据挖掘和机器学习的算法找到其关联关系,并运用回归分析从而实现预测。
数据挖掘的任务按照目标可以分为4类:
1)分类:通过分析训练集的数据,为每一个分类建立分类分析模型,用这个已知的规律对其他数据进行分类
2)回归:建立因变量和自变量之间关系的模型
3)聚类:将对象集合分成由类似的对象组成的多个类的过程
4)关联规则:寻找给定数据集合中各个因子之间的关联关系
人们经常见到的“逻辑回归模型”、“神经网络模型”、“遗传算法”、“决策树”等等都是监督学习过程的挖掘算法。这类算法在机器学习和深度学习里面大量使用,是大数据公司必备的专业技能。极光大数据作为国内领先的移动大数据服务商,在这方面的实际案例颇多,例如极光大数据团队利用神经网络算法预测个人前往某一个特定区域的概率和时间,准确度可以达到80%以上;他们还利用神经网络算法和随机森林算法对个人喜欢的移动应用进行推荐下载和推荐产品;此外,极光大数据团队还自主开发了空间轨迹相似度STS(spatialtrajectorysimilarity)算法进行同轨分析等。
数据挖掘技术随着大数据时代的到来已变幻出更强的功能特征,而在大数据服务商的精耕细作下,也必将为各行业带来进步的动力。
大数据停机是什么意思
1大数据停机是指大数据处理系统因某种原因无法继续正常运行,需要进行停机维护、修复等操作。2经常发生大数据处理数量庞大、系统负荷过高、网络连接中断、硬件故障等情况,导致系统出现异常或崩溃,无法正常运行,需要对系统进行停机维护、修复等操作。3大数据停机会对企业和个人产生一定的经济损失和时间浪费,因此应积极采取措施,加强系统运维和维护,预防和降低停机发生的概率。
数据分析(数据挖掘)有什么用
数据分析和数据挖掘在本质上是有一定区别的
数据分析:是指运用合适的统计分析方法对采集来的规模巨大的数据进行分析,是一个为提取有用信息和形成结论而对数据加以详细研究和概括的过程;
数据挖掘:是指用相关算法从大量的数据中探索隐藏在其中的信息的过程。
我们可以简单的理解为,一个是从广度上对数据的处理过程,一个是从深度上对数据的处理过程。
数据分析和数据挖掘两者是相辅相成的一个可以通过大量数据的整理和解读来对企业的现状进行分析,并通过数据来反映目前企业管理的问题,并可将相应的问题原因进行深入追踪,最后确认相关的责任人,保证了数据的可追溯性,来辅助企业的整体管理和运营;而数据挖掘通过对企业隐藏价值数据的深耕,可以对企业未来发展导向,做出预判,为企业高层提供相应的参考支持;一个企业想要发展的更好,处理好当下企业发展中的问题是必要的,着眼于未来企业的发展是重要的,而数据分析和数据挖掘在企业中的实际运用,可以更好的支撑企业的运营管理,提供决策分析,帮助企业走的更高、更远。
数通畅联专注于企业IT架构、SOA综合集成、数据治理分析领域,感谢您的阅读与关注!数据挖掘的主要研究有哪些方向
数据挖掘主要研究方向包含算法研究和应用研究两个方面。
1.数据挖掘算法研究。目前数据挖掘的主流算法包含统计学习类算法和机器学习类算法(监督学习、半监督学习、强化学习等)、而机器学习算法里面最热门的就是深度神经网络算法,主要工作是找到更加先进的算法或改进这些算法,使其在数据挖掘方面更有效率,或者将这些算法做成工具,使用起来更方便,降低算法门槛。
2.应用研究,主要是大数据分析范畴。数据挖掘在人文社科、经济、医疗、理工科等各个领域都有极强的应用前景。
第一步,选定某个自己擅长的领域,找到获取该领域数据的途径,这一步看似简单,其实很难,一方面是需要的数据量非常大而且要全面,另一方面是要尽可能保证获取的数据的真实性,这个前提没做好,后面的分析毫无意义。
第二步,数据清理,必须了解数据清理的常用算法,对数据进行冗余清理和标准化处理等。
第三步,选择合适的算法,不断做实验,获得实验结论
第四步,建立适当的结论评价标准,判断第三步的结论是否有实际意义,如果结论存在明显错误或者无法自洽,则从新选择算法,如果换了多个算法,结论仍然无意义,则考虑是数据存在问题,很可能需要从新找数据,或者考虑之前的数据不够充分,还需要补充其他方面的数据重新分析。
另外,数据挖掘需要具备的知识体系至少包含统计分析、机器学习、神经网络、数据库。入门门槛建议是985硕士及以上。
关于数据分析(数据挖掘)有什么用到此分享完毕,希望能帮助到您。
声明:本文内容来自互联网不代表本站观点,转载请注明出处:https://bk.77788889.com/12/95363.html